

What Minnesota's Changing Climate Means for Weather Disasters & Emergencies

Kenny Blumenfeld | Sr. Climatologist, Minnesota DNR

Items to bear in mind

- 1. Our climate has extreme Variability (ups and downs), and always will
- 2. Our climate is experiencing ongoing *Trends* (persistent changes)

 \rightarrow Variability + Trends can cause unprecedented conditions

- 3. We have not yet experienced all changes
- We must accept nuances <u>and</u> expect surprises (climate cannot always follow bullet points)

Some Facts

- 1. Minnesota: naturally "extreme" climate with high variability and many weather hazards
- 2. Human greenhouse gas emissions cause global temperatures to rise
 - →Cause of almost all long-term warming past 100+ years
 - →Short-term ups and downs (1-48 months) from natural factors
- 3. Rising global temperatures = more access to heat and water vapor

Facts (continued)

- 4. Minnesota's climate is changing (because of 2 & 3)
- 5. Some Minnesota hazards "worsening"
- 6. Some not worsening YET
- 7. Some not worsening and unlikely to do so
- 8. Some uncertain or changing in other ways
- 9. Some new/hybrid hazards emerging

Guiding Questions

- 1. Is a given weather hazard becoming:
 - More frequent?
 - More intense?
 - Longer-lasting?
 - Larger?
- 2. Is its timing or seasonality changing?

These MN hazards are becoming More Frequent, More Intense, Longer-Lasting, or Larger

"WORSENING"

- 1. Wet periods, heavy rain
- 2. Heavy snow
- 3. Humid heat waves (slight increases)

Climate tie-in: more available water vapor because of higher global

temperatures

1991-2020 Wettest "Normals" Period on Record

Climate "normal": an adjusted 30-year average, based on data ending in a "zero" year (e.g., 2020)

https://www.climate.gov/news-features/understanding-climate/climate-change-and-1991-2020-us-climate-normals

U.S. ANNUAL PRECIPITATION COMPARED TO 20th-CENTURY AVERAGE

Increasing size of largest annual daily rainfall for a typical station

Size of largest rainfall in historical network increasing

Increase in 100-year daily rainfall events

Count of "100-year" Precipitation Events by Year, 1916-2020 From 38 Stations 2.5 None prior to 1950s; increased frequency since then 1.5 0.5 -9 per. Mov. Avg. (100-yr events) ■100-yr events

MACPZA 2023 | Blumenfeld

This WAS NOT a 100-year event (June 17, 2018, Gooseberry Falls SP

More precipitation and more heavy precipitation projected

Projected changes in the number of days with very heavy precipitation (top 2% of all rainfalls each year) for the middle of the current century (2041-2070) relative to the end of the last century (1971-2000) under continued emissions (A2 scenario).

Difference in Number of Days

0.9

12

Source: 2014 National Climate Assessment, Midwest Chapter

Precipitation Difference (Inches)

0.0 0.8 1.6 2.4 3.2 4.0 ->

Projected changes in average annual precipitation for the middle of the current century (2041-2070) relative to the end of the last century (1971-2000) under continued emissions (A2 scenario).

Source: 2014 National Climate Assessment, Midwest Chapter

Heavy Snow Increasing Across MN (even as winters warm)

Average Seasonal Heavy Snow Days (4+ inches) and Statewide Average **November - April Temperature** 9 25 DEPARTMENT OF NATURAL RESOURCES 8 State Climatology Office 24 Heavy Snow Days Temperature (°F) 23 6 5 3 20 19 0 18 1950⁵⁴ 195⁵⁵ 1960⁶⁴ 196⁵⁶⁹ 10¹¹ 19¹⁵¹⁹ 1980⁸⁴ 198⁵⁸ 1990⁹⁴ 199⁵⁹ 10⁰⁰⁴ 10⁵⁰⁹ 10¹⁰¹⁴ 10¹⁵¹⁹ 10^{13*}

Duluth International Falls Rochester St. Cloud Twin Cities --Statewide Nov-Apr Avg Temps (F)

Snow data from NOAA/NWS Cooperative Network, accessed via Applied Climate Information System (ACIS) (<u>https://xmacis.rcc-acis.org/</u>).

Temperature data obtained from NOAA via Minnesota Climate Explorer (<u>https://arcgis.dnr.state.mn.us/ewr/climateexplorer/main/historical</u>)

Extreme humidity beginning to increase

Highest Annual 6 PM CST Dew Points Minneapolis-St. Paul, 1903-2023

MACPZA 2023 Blumenfeld

Year

Extreme humidity beginning to increase

Highest 7 PM dew points on record: Most of the highest values have been recorded in recent 30 years (since 1990). The current period sees greater dew point extremes than any other period on record.

Date	Temperature (°F)
7/19/2019	80
7/17/2011	80
7/12/1995	80
7/20/2002	79
7/10/1966	79
6/16/2018	78
7/19/2011	78
7/22/1999	78
8/6/1996	78
8/12/1995 (12 others)	78

DEPARTMENT OF NATURAL RESOURCES State Climatology Office

MACPZA 2023 | Blumenfeld

These MN hazards are NOT YET becoming More Frequent, More Intense, Longer-Lasting, or Larger

"NOT WORSENING <u>YET</u>"

- 1. High temperature extremes (all-time records untouched for 80+ years)
- 2. Counts of 90° or 100° F days (steady or slight downward trend)
- 3. Drought (long-term decreases in all measures, even when including current episode)

\rightarrow BUT projections unanimous that increases coming

→*Climate tie-in*: more heat all over the planet, eventually including our summers. Future dry periods will come with more heat.

Through 2023, no clear trend towards worse heat (yet)

Hottest Days of Summer Milan (MN), 1894-2023

Downward spikes indicate historical dry episodes

Precip (in)

Precipitation For Minnesota, January-December

2021: 29th Driest Year on Record

Precip (in)

2020-2023 is (currently) the wettest "dry period on record!

Precipitation For Minnesota, January-December

May-August 2023: 4th driest since 1895

November 2022 – April 2023: 3rd wettest since 1895

Precip (in)

Precipitation For Minnesota, November-April

September - October 2022: 4th driest since 1895

Precipitation For Minnesota, September-October

June - October 2022: #1 driest since 1895 in some areas

Precipitation For Selected Counties, June-October

December 2021 - May 2022: #1 wettest in some areas

Precipitation For Selected Counties, December-May

January - August 2021: 3rd driest northern MN

Precip (in)

Precipitation For Selected Counties, January-August

However, more warming and heat extremes on the way

Projections indicate:

- Continued warming
- More summer heat extremes
 <u>For all future scenarios</u>

→This will almost certainly increase episodic drought severity also Projected Change in the Number of Days Over 90°F Period: 2041-2070 | Lower Emissions: B1

Image produced from NOAA projections by GLISA (Great Lakes Integrated Science + Assessments), derived from models in 2014 National Climate Assessment, <u>Midwest Chapter</u>

Expect Surprises Too

50 Highest Temperatures on Record, Portland, OR

New Heat Extremes May Arrive Abruptly

50 Highest Temperatures on Record, Portland, OR

These MN hazards are NOT becoming and SHOULD NOT become More Frequent, More Intense, Longer-Lasting, or Larger

"NOT WORSENING AND UNLIKEY TO DO SO"

- 1. Low temperature and wind chill extremes (much less frequent, much less severe)
- 2. Counts of 0°, -20° or -40° F temperatures (strong decrease)

→Fastest-changing part of MN climate

→*Climate tie-in*: greenhouse effect always largest during winter so increased GHGs affecting cold conditions most

Faster warming in winter, at night, and with northward extent

2023 Blumenfeld

Fewer/lesser cold extremes

Typical Jan. night in International Falls now ~ 10° F warmer!

MACPZA 2023 | Blumenfeld

Combined trends: more snow AND more thaws

Avg Ann. Snowfall and Nov-Mar Lows above 32 Milan

Winter Rain More Common

Annual Winter Rain Days (December – February), Twin Cities

Wet Snow & Rain in Winter is a Problem

Scott Skar via MPR

These MN hazards are responding to non-climatic factors or unclear

"UNCERTAIN"

1. Severe Convective Storms (tornadoes, hail, derechos) not increasing

 \rightarrow Seasons expanding, however!

2. Pressure gradient winds and mid-latitude cyclones

→ Apparent increases undermined by sensing/observational changes

→Climate tie-in: Localized or regional hazards rely on localized/regional processes more so than global ones, but overall warming expands potential season

Severe Thunderstorm and Tornado Warnings for Minnesota By year

DEPARTMENT OF NATURAL RESOURCES State Climatology Office

Data from Iowa Environmental Mesonet Automated Data Plotter (Option #73), Iowa State University. <u>Note</u>: warning methods have changed over time, requiring cautious interpretation of long-term comparisons.

Data from NOAA Storm Events Database: <u>https://www.ncdc.noaa.gov/stormevents/</u> <u>Note</u>: Collection and verification methods have changed over time. Cautious interpretation required

Data from NOAA Storm Events Database: <u>https://www.ncdc.noaa.gov/stormevents/</u> <u>Note</u>: Collection and verification methods have changed over time. Cautious interpretation required

December 15, 2021: Tornadoes and derecho

- Severe weather season has expanded
 - Earlier (early March tornadoes) •
 - Later (mid-December severe weather outbreak
 - Northward (Boundary Waters tornado October 2021)
- Increased potential for hazard ۲
 - "cascades" following power outages

These MN hazards are secondary, combined, or "new"

"HYBRID or EMERGING"

- Wildfire (not just from drought, but from ecological stress)
- Degraded air quality (especially from wildfire smoke)
- →Normal hazards but becoming more likely
- →Climate tie-in: warm winters and altered hydrothermal budgets pushing some forests/vegetation beyond tolerances

Courtesy: Greta Kaul

Important considerations

• Episodic precipitation extremes increasing in all seasons and likely to continue

→Damage from flash floods, excessive snow, compound snow/rain loading

- Future (mid-century and beyond) likely to include historic and unprecedented heat extremes and cooling needs
- Although tornadoes, straight-line winds, and large hail have unclear trends, "cascading hazards" related to them likely because of seasonal expansion

In Summary

- 1. Minnesota experiencing wettest period on record, with more frequent and larger extremes, even when accounting for current drought
- 2. Also warming rapidly, with profound increases during winter
- 3. Further increases in precipitation/extremes, warming, and potentially major heat extremes on the way, with more significant drought as increased heat kicks in
- 4. Severe weather season is expanding
- 5. Wildfire and degraded air quality are new/emerging hazards

Thank You!

Kenny Blumenfeld

Kenneth.Blumenfeld@state.mn.us

651-539-2151